
Dynamic Load Balancing Mechanism
In Multiservice Cloud Storage

Karishma B. Badgujar, Prof. Pravin R. Patil

Department of Computer Engineering
Pune Institute of Computer Technology

Pune, India

Abstract— Today’s world, Internet is most popular
technology. Everyday about 400 billion peoples introduced
with internet. Traffic is growing continuously over internet.
Popularity of internet is lies in web applications. So it is
necessary to manage large traffic over internet. All data of
internet is being shared on cloud. The cloud can store large
amount of data. But the data redundancy and duplication
may cause the misbalance of memory space of the cloud. The
system administrator cannot give assurance of the every single
node which is being participated inside the process of data
integration on cloud. To avoid the load of duplicate data on
the cloud we developed novel data center architecture: INS
(Index Name Server). It helps to improve the performance of
the cloud system.

Keywords—INS, P2P, Cloud system, Load Balance.

I. INTRODUCTION

Cloud Computing is most emerging technology in
Networking. Cloud is nothing but pool of virtualized
computer resources. Cloud is an internet-based
development where virtualized and dynamically scalable
resources are provided as a Service. Though Cloud
Computing has glorious features there are certain crucial
issues which are needed to be resolved. One of them is load
balancing. In existing systems static approach is used. Due
to static approach quality of utilization of resources can’t
be achieve. The system administrator no longer can give
assurance of the optimal status of each node in the cloud
system, which might responsible to integration bottleneck
and wastage of resource. Due to this the flexibility and
utility of cloud storage system is no longer remain because
the system keeps handling duplicate and redundant data.
Here we use the index database to find out the various
sources of user demand, and analyse environmental quality
monitoring parameter and level of busy parameter to
distribute the data and to achieve the load balancing
system. Thus, while transmitting prior data, our proposed
scheme can avoid the network congestion which occurs due
to duplicate data and less waiting time at the same node
inside the cloud.

II. LITERATURE SURVEY

Load balancing is process of dividing workload among
nodes to increase the response time. Load balancing is
process of removing dependency from single node and to
adding resources in such way workload can be distributed
over them. Cloud computing is most emerging technology.
Cloud is nothing but pool of virtualized resources which

provides on demand services. In the business model using
software as a service, users are provided access to
application software and databases. Cloud providers
manage the infrastructure and platforms that run the
applications. SaaS is sometimes referred to as "on-demand
software". Cloud Computing is to effective as it can give
high availability and scalability. Effectiveness of cloud is
lies in load balancing. Load balancing is most complex task
in Cloud Computing. There are number techniques to
achieve load balancing.

For any load balancing algorithm, it is very important to
analyze the traffic flow in real-time scenarios over different
geographic regions, and then balance the overall workload
accordingly. All regions over the globe have a different
time zone and have certain peak hours during which the
network load is supposed to be at its peak. Therefore, load
balancer must be capable of handling the traffic in peak
hours in every location so as to achieve maximum resource
utilization and throughput.

III. EXISTING SYSTEM

A. Load Balancing Approach with Centralized Load
Balancer and Two Back-end Servers

In “Applying Load Balancing: A Dynamic Approach”,
there is a design with one Load Balancer communicating
with all the nodes and monitoring their load. This load
balancer reports the load to two back-end servers.

Fig 1: Load balancing in dynamic approach.

The servers finally make the balancing decision and return
the address of the suitable node to which the overload

Karishma B. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7626-7630

www.ijcsit.com 7626

should be transmitted. Additional servers are used for the
sake of reliability. If one server fails, the other can take its
job and the system continues to work properly. This design
is illustrated in the Fig.1. The central load balancer has
three parts: Load monitoring server, Load reporting server
and load balancing library while the two back-end servers
only comprise of Load monitoring server and Load
reporting server. The Load Reporting Server is used to
collect the machine load information on which it is running.
The collected data is sent to Load Monitoring Server which
is located on same machine. Load Monitoring Server stores
the collected data in data structure. Then an all-to-all
broadcast of the load information is carried out. Then, at
the central load balancer, when request comes, the Load
Balancing Library finds least loaded machine and return the
address of that machine.
The drawback of the design is the huge communication
overhead involved as it follows a global strategy of load
balancing. Secondly the cost of this all-to-all broadcast of
load information is high[1].

B. A load balancing approach using one supporting node
with each primary node and using a priority scheme to
schedule tasks at supporting nodes

Let us now have a look on another approach it uses one
supporting node (denoted as SNi) with each primary node
(denoted as Ni) as depicted in Fig. 5. In case of overload at
node Ni, an interrupt service routine generates an interrupt
and the overload is transferred to its supporting node and it
also uses a priority scheme, if the priority of the incoming
process at the supporting node is greater than that of the
currently running process, then the current process is
interrupted and assigned to a waiting queue and the
incoming process is allowed to run at the supporting node.
Otherwise the current process continues and incoming
process is in waiting state until the current process is
completed.

Fig 2: Load Balancing in Task Supporting Node Approach.

This approach has a drawback of its complexity and the
cost of such a huge infrastructure. The priority scheme

makes it more dynamic and suitable for distributed systems
as well as handling real time tasks[2].

C. Efficient Load Balancing in Cloud Computing using
Fuzzy Logic

This paper designed a load balancing algorithm based
on round robin in Virtual Machine (VM) environment of
cloud computing in order to achieve better response time
and processing time. The load balancing algorithm is done
before it reaches the processing servers the job is scheduled
based on various parameters like processor speed and
assigned load of Virtual Machine (VM) and etc. It
maintains the information in each VM and numbers of
request currently allocated to VM of the system. It identify
the least loaded machine, when a request come to allocate
and it identified the first one if there are more than one least
loaded machine.

Fig 3: Membership Output Function of Fuzzy Logic Balanced Load

This system uses following algorithm:
Begin

Connect_to_resources()()
L1
If(resource found)
 Begin

Calculate connection_string()
Select fuzzy_connection()
Return resource to requester

 End
Else
 Begin

If(Anymore resource available)
 Choose_next_resource()
 Go to L1

 Else
 Exit
End

End

They tried to implement the new load balancing technique
based on Fuzzy logic. Where the fuzzy logic is natural like
language through which one can formulate their problem.
The advantages of fuzzy logic are easy to understand,
flexible, tolerant of imprecise data and can model nonlinear

Karishma B. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7626-7630

www.ijcsit.com 7627

functions of arbitrary complexity, and is used to
approximate functions and can be used to model any
continuous function. Fuzzy inference is the process of
formulating the mapping from a given input to an output
using fuzzy logic and the mapping provides a basis from
which decisions can be made, or patterns recognized [3].

D. Optimal Load-Balancing

This paper is about load-balancing packets across
multiple paths inside a switch, or across a network. It is
motivated by the recent interest in load-balanced switches.
Load-balanced switches provide an appealing alternative to
crossbars with centralized schedulers. A load-balanced
switch has no scheduler, is particularly amenable to optics,
and – most relevant here – guarantees 100% throughput. A
uniform mesh is used to load balance packets uniformly
across all 2-hop paths in the switch.

Fig 4: Optimal Load Balancing.

In this paper we explore whether this particular method of
load balancing is optimal in the sense that it achieves the
highest throughput for a given capacity of interconnect.
The method we use allows the load-balanced switch to be
compared with ring, torus and hypercube interconnects,
too. We prove that for a given interconnect capacity, the
load-balancing mesh has the maximum throughput. Perhaps
surprisingly, we find that the best mesh is slightly non-
uniform, or biased, and has a throughput of N/(2N − 1),
where N is the number of nodes[11].

E. Structured Peer-to-Peer Systems Using Load
Balancing with Imperfect Information

This paper, assume that the entire hash space provided
by a DHT is [0, 1], and each virtual server in the DHT has a
unique ID selected independently and uniformly at random
from the space [0, 1]. Let N be the set of participating
peers, and V be the set of virtual servers hosted by the
peers in N in the DHT. Denote the set of virtual servers in
peer i by Vi. Each peer i Є N in our proposal estimates the
load, which is denoted by Ti, that it should perceive, where

Ti is an estimation for the expected load per unit capacity,
and Є is a predefined system parameter. If the current total
load of i is greater than Ti (i.e., i is overloaded), then i
migrates some of its virtual servers to other peers.
Otherwise, i is under-loaded, which does nothing but waits
to receive the migrated virtual servers. For an overloaded
peer (e.g., peer i), i picks those virtual servers for
migration, such that 1) i becomes under-loaded, and 2) the
total movement cost, MC, in (2) is minimized due to the
reallocation. If i is an under-loaded peer, then i may be
requested to receive a migrated virtual server, and i accepts
such a virtual server if the added load due to the virtual
server will not overload itself; otherwise, i rejects such
virtual server.

Algorithm: REALLOCATION (i) Peer i computes the
reallocation of its local virtual servers, where Load (i)
=	∑ ௩௩∈ܮ

A = ∑ ܸ݅∋ݒݒܮ /∑ ܰ∋݅݅ܥ

1: A ← Ln n.
 (ݕ)ܻܨݕ) 0=ݕݔܽ݉ܥ(ݕ݀ (ݔ)ݔܨݔ) 0=ݔݔܽ݉ܥ(ݔ݀ ;

2: Ti ← A × Ci + Є;
3: switch Load(i) do
4: case > Ti
5: Ui ← φ;
6: while Load(i) > Ti and Vi ≠ Ui do
7: v ← arg min{Lv|v Є Vi - Ui};
8: find j Є I satisfying Eq.(4) to accommodate v;
9: if j accepts v then
10: Vi ← Vi – {v};
11: Ui ← Ui U {v};
12: break;
13:case ≤ Ti

14: while Load(i) < Ti do
15: receive v to host;
16: Vi ← Vi U {v};
17: break;

F. Efficient, Proximity-Aware Load Balancing for DHT-
Based P2P Systems

This paper presents an efficient, proximity-aware load
balancing scheme by using the concept of virtual servers. It
contents 1) Relying on a self-organized, fully distributed
key tree structure constructed on top of a DHT, load
balance is achieved by aligning those two skews in load
distribution and node capacity inherent in P2P systems—
that is, have higher capacity nodes carry more loads; 2)
proximity information is used to guide virtual server
reassignments such that virtual servers are reassigned and
transferred between physically close heavily loaded nodes
and lightly loaded nodes, thereby minimizing the load
movement cost and allowing load balancing to perform
efficiently; and 3) our simulations show that our proximity-
aware load balancing scheme reduces the load movement
cost by 11-65 percent for all the combinations of two
representative network topologies, two node capacity
profiles, and two load distributions of virtual servers.

Karishma B. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7626-7630

www.ijcsit.com 7628

It consist of three algorithms, named as,
1) Check a KT node algorithm

Procedure check_KT_node(KT-node X)

1: if (X.region ⊆	the responsible region of X.host)
then
2: delete_KT_children(X)
3: else
4: add_KT_children(X)
5: end if

 Procedure delete_KT_children(KT_node X)

1: for i=1 to k do
2: if (X.child[i]≠NULL) then
3: delete X.child[i]
4: X.child[i]=NULL
5: end if
6: end for

Procedure add_KT_children(KT_node X)

1: for i=1 to k do
2: if (X.child[i]==NULL && X.child[i]→region ⊈ the responsible region of X.host) then
3: c = new KT_node
4: c→region = the ith fraction of X.region
5: X.child[i] = c
6: c→parent = X
7: plant_KT_node(c)
8: end if
9: end for

2) LBI aggregation algorithm

Procedure KT_node_report_LBI(KT_node X)

1: if (X is a KT leaf node) then
2: <Lx, Cx, Lx,min> ← receive <Li, Ci, Li,min>

from X.host
3: else
4: Receive <Li, Ci, Li,min>s from k children

/* i=1,…,k*/
5: Lx ← ∑ ୀଵ݅ܮ
6: Cx ← ∑ Ciୀଵ
7: Lx, min ← the smallest Li,min
8: end if
9: if (X is not a KT root node) then
10: Report <Lx, Cx, Lx,min> to X.parent /*

report to the parent node*/
11: end if

3) Virtual server assignment algorithm

Procedure KT_node_VSA(KT_node X)

1: VSA.pool ← φ
2: if (X is a KT leaf node) then

3: VSA.pool ← VSA information from
X.host /* receive the VSA information
from its hosting virtual server */

4: else
5: VSA.pool ← VSA information from k

children
6: end if
7: if (VSA.pool.size ≥ pairing_threshold || X is a
KT root node) then
8: KT_node_rendezvous_point(X,

VSA.pool) /* X serves as a rendezvous
point */

9: else
10: Report VSA.pool to X.parent /*

propagate the VSA information to its
parent */

11: end if

Procedure KT_node_rendezvous_point(KT_node
X,

VSA information pool)
1: light_list ← remove all <∆Lj = Tj – Lj,
ip_addr(j)> s from pool /* light_list maintains the
VSA information of light nodes */
2: heavy_list ← remove all <li,r, vi,r, ip_addr(i)> s
from pool /* heavy_list maintains the VSA
information of heavy nodes */
3: pool ← φ
4: while (heavy_list ≠ φ) do
5: Remove the most loaded virtual server

vi,r from heavy_list, and assign it to a
DHT node j in light_list such that ∆Lj is
minimized and subject to the condition
that ∆Lj ≥ Li,r

6: if (vi,r can be assigned) then
7: Remove <∆Lj, ip_addr(j)> from light_list
8: if (∆Lj – Li,r ≥ Lmin) then
9: Insert <∆Lj – Li,r, ip_addr(j) > into

light_list
10: end if
11: Send the assigned information <vi,r,

ip_addr(i), ip_addr(j)> to DHT nodes I
and j /*prepare for virtual server
transferring */

12: else
13: pool ← pool U {<Li,r, vi,r, ip_addr(i)>}
14: end if
15: end while
16: pool ← pool U light_list
17: if (pool.size > 0 && X is not a KT root node)
then
18: Report pool to X.parent /* report un-

assigned VSA information to its parent */
19: end if

Karishma B. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7626-7630

www.ijcsit.com 7629

IV. PROPOSED SYSTEM

As we seen above the traditional data storage methods
require high cost of hardware and data management. The
cloud storage techniques in the cloud systems range from
small sized files to large-scale commercial application. A
resource-integrated heterogeneous system achieves the best
storage, along with the optimal performance of the load
balancing, and it also reduce the risk of losing information
due to failure of storage device. The content of the cloud
may be duplicated due to redundant data present on the
cloud storage. This data is uploaded by different users at
different time. To handle the load caused by redundant
data, this paper presents cloud management architecture,
named as Index Name Server (INS), this is a de-duplication
with access point selection optimization techniques which
improves the performance of the cloud system.

Fig 5: System architecture.

Our system consists of following methodologies.
1) Cloud balancing by primary server

When a client requests for multimedia upload and
download, then the request of client is being handle by
central server. This is also known as a primary server. This
primary data then divide the data into various categories
depending upon the request of the client. This
categorisation is done by the cluster head which is present
in present inside the cluster server. The cluster server is the
server which handles the all task of clustering inside the
cloud. The clustering is done on the basis of user requested
data.
2) Proximity Weight calculation module

Main task of the central primary server is to maintain
the load along the cluster server. The capacity of the cluster
server is maintained and not allows to be exceeded beyond
the memory limit of that server. After that consistency of
data provided by various servers is checked by central
server. This consistent data is provided to the client by
limiting client request load. For this it calculate the network
proximity values. After that we measure the latency of each
server in specific landmark. Then by computing the
landmark order we calculate the server utilization ratio.

This ratio minimises the weight calculation and the link
assessment.
3) Load balancing

The client request is h handle by specific cluster head.
Then we consider weighted bipartite graph of client
requested cluster head. After that we remove links which
do not provide consistent data. Then we again go for the
calculation of the network proximity value. Finally we
compute latency order to balance the load.

V. CONCLUSIONS

Here we proposed a cloud management mechanism
which objective of improving the accuracy in backup
selection, like considering habits, data rate and formats of
user. This includes statistic parameters and those may be
classified based on file formats; or ignoring peak hours. We
can collect the information for more efficient cloud load
computing to propose various parameters for various
service types. In this way, the load of the data cloud can be
reduced more accurately and the performance of heavily
loaded cloud storage system can be greatly improved by
using this system.

REFERENCES
[1] Wenzheng Li, Hongyan Shi, “Dynamic Load Balancing Algorithm

Based on FCFS”_ 2009 Fourth International Conference on
Innovative Computing_ Information and Control (ICICIC), 2009, pp.
1528-1531.

[2] Sun Nian, Liang Guangmin, “Dynamic Load Balancing Algorithm
for MPI Parallel Computing”_ 2009 International Conference on
New Trends in Information and Service Science (NISS '09), 2009,
pp. 95-99.

[3] Shu-Ching Wang, Kuo-Qin Yan, Wen-Pin Liao, Shun-Sheng Wang,
“Towards a Load Balancing in a Three-level Cloud Computing
Network”_ 2010 3rd IEEE International Conference on Computer
Science and Information Technology (ICCSIT 2010), vol.
1_2010_pp. 108-113.

[4] Ananth Rao_Karthik Lakshminarayanan_Sonesh Surana_Richard
Karp _Ion Stoica_“Load Balancing in Structured P2P Systems”_
Lecture Notes in Computer Science_vol. 2735_2003, pp. 68-79_
DOI: 10.1007/978-3-540-45172-3_6.

[5] Y. Zhu, Y. Hu, “Efficient_Proximity-Aware Load Balancing for
DHTBased P2P Systems”_IEEE Transactions on Parallel and
Distributed Systems, vol. 16_Issue 4_ 2005_pp. 349-361.

[6] Jiexi Zha, Junping Wang, Renmin Han, Maoqiang Song, “Research
on load balance of Service Capability Interaction
Management”_2010 3rd IEEE International Conference on
Broadband Network and Multimedia Technology (IC-BNMT
2010)_2010_pp. 212-217.

[7] Ruixia Tong, Xiongfeng Zhu, “A Load Balancing Strategy Based on
the Combination of static and Dynamic”_2010 2nd International
Workshop on Database Technology and Applications
(DBTA)_2010_pp. 1-4.

[8] Lin Xia, Han-Cong Duan, Xu Zhou, Zhifeng Zhao, Xiao-Wen Nie,
“Heterogeneity and Load Balance in Structured P2P Syste” 2010
International Conference on Communications, Circuits and Systems
(ICCCAS), 2010, pp. 245-248.

[9] Yonghui Zhang, Chunhong Zhang, Yang Ji, Wei Mi, “A Novel Load
Balancing Scheme for DHT-BASED Server Farm”_ 2010 3rd IEEE
International Conference on Broadband Network and Multimedia
Technology (IC-BNMT), 2010, pp. 980-984.

[10] Lu Gao, Min Peng, “Optimal Super peer Selection Based on Load
Balance for P2P File-sharing System” _ 2009 International Joint
Conference on Artificial Intelligence (JCAI '09), 2009_pp. 92-95.

[11] Isaac Keslassy, Cheng-shang Chang, Nick Mckeown, Duan-Shin
Lee, “Optimal Load-Balancing”_Proceedings of IEEE
Infocom_2005

.

Karishma B. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7626-7630

www.ijcsit.com 7630

